¹⁴C in the Oceans Brett Walker, UC Irvine

AMS Short Course 2017

Outline

- Why is the surface ocean several hundred ¹⁴C years old?
- Controls on oceanic ¹⁴C
- Corals as diaries of ocean mixing and climate
- Mixing time of the deep ocean conveyor
- Why is dissolved organic carbon (DOC) so old?
- ¹⁴C in particles and Black Carbon

Marine Carbon Reservoirs

DIC:	Dissolved Inorganic C	(< 1µm)	38,100 GtC
DOC:	Dissolved Organic C	(< 0.2 <i>µ</i> m)	662 GtC
POC:	Particulate Organic C	(> 0.2 <i>µ</i> m)	25 GtC
BC:	Black C	(< 0.2 µm)	>14 GtC
SOC:	Sedimentary OC	0–1m	150 GtC

Why does the ocean contain so much DIC? (38,000 GtC)

CO₂ hydrates to H₂CO₃

$$CO_{2(gas)} + H_2O <---> H_2CO_3$$

 $H_2CO_3 (0.5\%) <---> H^+ + HCO_3^- (89\%)$
 $HCO_3^- <---> H^+ + CO_3^{2-} = (10.5\%)$

Gas Exchange of CO₂ Between Surface Ocean and Atmosphere (per 1 m²)

But ¹⁴C age of surface ocean is 300-600 ¹⁴C y. Why?

Major control on ¹⁴C in the surface ocean... The Winds

And the Coriolis Force -> Ekman Transport

Surface currents and pre-bomb Δ

Tales of past surface circulation + climate from corals

 $\frac{\text{We assume:}}{\Delta_{\text{coral}} = \Delta^{14} C_{\text{DIC in seawater}}}$

Delivery of coral core to boat, and sealing the hole in coral

Sectioning of Coral Cores

Δ (known-age corrected samples)

Corrected for decay of ${}^{14}C$ in the sample from the year of growth (x) to 1950

 Δ expresses the radiocarbon signature relative to "Modern" had the sample been measured in 1950. This is useful for studies attempting to show how the radiocarbon signature of air (tree rings) and water (corals) changes with time. It is the basis for creating the calibration curves used to calculate calendar age from ¹⁴C age.

Known age correction

You obtain F of 0.900 for a coral that grew in Palmyra Atoll in AD 1900. What is the age corrected F value?

a) 0.9000
b) 0.8955
c) 0.9055
d) 0.9126

Known age correction

You obtain F of 0.900 for a coral that grew in Palmyra Atoll in AD 1900. What is the age corrected F value?

¹⁴C has decayed away between 1900 to 1950.
Have to add ¹⁴C. [↑] F
50‰ per 400yrs, or ~5‰.

Bomb ¹⁴C maximum in surface ocean occurs 10 y after that in air

¹⁴C measurements led to our understanding of the deep circulation in the ocean by Broecker and others

Raise 1 or 2 fingers with the right answer

You measure Δ^{14} C in 3 seawater DIC samples but forget to label the samples. Values are -240‰, +30‰ and -80‰. Where are they from?

- 1) Deep N. Atlantic, surface Pacific and deep Indian
- 2) Deep N. Pacific, surface Atlantic and deep Atlantic

Raise 1 or 2 fingers with the right answer

You measure Δ^{14} C in 3 seawater DIC samples but forget to label the samples. Values are -240‰, +30‰ and -80‰. Where are they from?

- 1) Deep N. Atlantic, surface Pacific and deep Indian
- 2) Deep N. Pacific, surface Atlantic and deep Atlantic

Marine Organic Matter

(Adapted from Hedges 2002, Verdugo 2004)

Why do we care about DOM and POM?

DOM ~662 Gt C

95% of NLOM

<10% known biomolecules

Microbial Loop: true base of food web

Bulk ¹⁴C age is very old (4,000–6,500 yrs)

But many labile components! Active role in Primary Prod.

Chelation of trace metals (micronutrients)

Why do we care about DOM and POM?

NON LIVING

5% of NLOM

Biological Pump: C-export

Supports all deep ocean life

20-30% known biomolecules

Water column recorded in sediments

Why do we care about DOM and POM?

Knowing *sources* and *dynamics* = understanding all OM in the ocean

Cycling of marine organic matter

Global DOC Concentrations – there is structure

DOC and DIC collection

Alysha Coppola filtering seawater

Water Filtered above 400m DOC is frozen DIC is poisoned with HgCl₂

Awesome mini, stainless steel filter holder designed by Sheila Griffin

UV Hg-arc lamp, Quartz reactor in...

The Can

Deep NE Pacific –

Sequential Oxidation of a Single Seawater Sample

DOC is a mixture of young and old OC Beaupré et al 2007

Published DO¹⁴C stations before 2012

Current DO¹⁴C stations + emerging

Spatial Distribution of DO¹⁴C in the Ocean

Druffel et al, GRL 2016

Data: Alysha Coppola and Ellen Druffel Graphics: Reiner Schlitzer

Now see difference in Deep N and S Pacific DOC Δ^{14} C

Average difference 23‰

Deep DOC Δ^{14} C has decreased by 23 ± 7‰ over the last 30 years

No change in [DOC] concentrations

Possible Explanations:

- 1985/1987 results inaccurate
- Spatial heterogeneity deep DOC Δ^{14} C
- Temporal change in DOC Δ^{14} C
- Change in deep circulation?
- Input of ancient hydrothermal DOC?

Temporal changes in DOC Δ^{14} C is possible – part of deep DOC is of bomb origin (~5%), turned over quickly.

New Deep Pacific DOC Δ^{14} C

30°N

30°S

Estimate of the amount of bomb ¹⁴C in deep N Atlantic DOC

If the Δ^{14} C of deep DOC in the N Atlantic is -417‰, the prebomb DOC was -456‰, and surface DOC was +75, how much post-bomb DOC is there in the deep N. Atlantic?

Estimate of the amount of bomb ¹⁴C in deep N Atlantic DOC

If the Δ^{14} C of deep DOC in the N Atlantic is -417‰, the prebomb DOC was -456‰, and surface DOC was +75, how much post-bomb DOC is there in the deep N. Atlantic?

Physics plays a large role in [DOC] & $\Delta^{14}C$ Age

Microbes also play a central role...

Particulate Organic C (PQC)

> 0.2 µm

- Includes:
- fecal pellets, forams, small organisms, marine snow, clay, silt

POC can sink rapidly! (>50µm) or not!

(<50µm)

.05-5 μ M C in seawater

Suspended POC Δ¹⁴C - N Pacific

Younger than
 DIC and DOC

• Hwang et al (2011) observed a linear correlation between Δ^{14} C and [Al], indicating old, resuspended sediment is making POC old. Compound specific radiocarbon analyses (CSRA)

Lipids studied by Pearson et al (2001) in sediments and Ingalls et al (2006) in Archaea

Archael lipids Glycerol dialkyl glycerol tetraether lipids (GDGTs)

cholesterol

Compound specific radiocarbon analyses (CSRA)

Neutral Sugars: Repeta et al (2006)

Ring forms of hexose sugars

Hawaii Sugars

15m: +40-60‰ (like DIC) 670m: -100‰ (still bomb ¹⁴C!)

Amino Acids: Bour et al (2016)

Why is DOC So Old? Is BC important?

- Marine Black C (BC) is ~ 5% of DOC and can be > 23,000 $^{14}\mathrm{C}$ yr old (–940‰)
- BC contributes in a small way to the old ¹⁴C age of DOC

Biomass burning Fossil fuel combustion

Extracting BC from Seawater

- Oxidize BC to BPCA marker compounds
- Methylate BPCAs for collection on PCGC for ¹⁴C analysis

Δ^{14} C of bulk DOC vs. Δ^{14} C of BC in SOC

Coppola & Druffel 2016

Why is DOC So Old?

Thank you!

Questions?