

# **Tree-rings and Radiocarbon**

#### Lukas Wacker

Lukas Wacker, Laboratory for Ion Beam Physics, ETH Zürich

# **Requirements for accurate high-precision dating**

#### Tree-rings as archive for atmospheric <sup>14</sup>C

- \* Annual structure
- ★ Long accurate annually resolved archives (back to 12 000 years)
- \* Atmospheric radiocarbon signal (CO2 uptake)
- ★ Growing season
- ★ CO<sub>2</sub> uptake and cellulose formation

# **Requirements for accurate high-precision dating**

#### Tree-rings as archive for atmospheric <sup>14</sup>C

- \* Annual structure
- ★ Long accurate annually resolved archives (back to 12 000 years)
- \* Atmospheric radiocarbon signal (CO2 uptake)
- ★ Growing season
- ★ CO<sub>2</sub> uptake and cellulose formation

#### What can we learn from <sup>14</sup>C in trees

- \* Solar modulation, earth magnetic field
- ★ Carbon cycle
- \* Synchronize archives / absolute timescales

# **Requirements for accurate high-precision dating**

#### Tree-rings as archive for atmospheric <sup>14</sup>C

- \* Annual structure
- ★ Long accurate annually resolved archives (back to 12 000 years)
- \* Atmospheric radiocarbon signal (CO2 uptake)
- ★ Growing season
- ★ CO<sub>2</sub> uptake and cellulose formation

#### What can we learn from <sup>14</sup>C in trees

- \* Solar modulation, earth magnetic field
- ★ Carbon cycle
- \* Synchronize archives / absolute timescales

#### Radiocarbon calibration

- \* Importance tree-ring signal for precise dating
- ★ Fine structure offers new opportunities...

# Dendrochronology



||| Ion Beam | Physics

### Hohenheim oak chronology



Friedrich et al. 2004

#### **EH**zürich



#### **Pine tree extension**





New Late Glacial wood findings in Zurich

- 260 trees
- Well-preserved rootstocks
- Range: 11 500 13 000 BC







### **Preservation in clay**



### **Extending the tree-ring IntCal curve**







### How do trees grow

#### **Growth seasonality**



Day of the year

https://serc.si.edu/research/projects/tree-phenology

#### **EH**zürich

lon Beam Physics

### Seasonality of wood formation

Growth: May - October

silver fir, Norway spruce and Scots pine



H.E. Cuny et al. 2015

#### **EH**zürich



#### **Seasonal growth of tree**





### **Carbon cycle**



D. Güttler et al. 2015

#### **E** *H* zürich



#### Non structural carbon



A. Kagawa et al. 2006

### Age of non structural carbon in trees

|                              |                              | Sugar                                                                 |                             | Starch                |                   |
|------------------------------|------------------------------|-----------------------------------------------------------------------|-----------------------------|-----------------------|-------------------|
| Site                         | Species                      | F <sup>14</sup> C                                                     | Age                         | F <sup>14</sup> C     | Age               |
| Howland Forest               | Red maple<br>Eastern hemlock | $\begin{array}{c} 1.1087 \pm 0.0466 \\ 1.0900 \pm 0.0326 \end{array}$ | $12.4 \pm 7.1$<br>9.4 ± 5.6 | 1.1236±0.0856<br>na   | 12.9 ± 10.8<br>na |
| Bartlett Experimental Forest | Red maple                    | $1.1119 \pm 0.0326$                                                   | 13.0±4.9                    | $1.1347 \pm 0.0663$   | $15.5\pm7.8$      |
| Harvard Forest               | Red maple<br>Eastern hemlock | $\begin{array}{c} 1.0818 \pm 0.0344 \\ 1.0641 \pm 0.0112 \end{array}$ | 7.5±5.8<br>4.4±2.7          | 1.0760 ± 0.0564<br>na | 6.1 ± 8.8<br>na   |
| All                          | Red maple<br>Eastern hemlock | $\frac{1.1015 \pm 0.0393}{1.0763 \pm 0.0266}$                         | 11.1±6.3<br>6.8±4.9         | 1.1119 ± 0.0728<br>na | 11.6±9.8<br>na    |

#### **EH**zürich

lon Beam Physics

### Earlywood / Latewood (oak)





#### Earlywood / Latewood



unpublished, ETHZ / WSL

# **Annual variation**











\* Long tree-ring chronologies can be built





- \* Long tree-ring chronologies can be built
- \* Chronologies are precise to the year



- \* Long tree-ring chronologies can be built
- \* Chronologies are precise to the year
- \* Rings incorporate annual <sup>14</sup>C signal of atmosphere directly



- \* Long tree-ring chronologies can be built
- \* Chronologies are precise to the year
- \* Rings incorporate annual <sup>14</sup>C signal of atmosphere directly
- \* Tree-rings sample atmospheric summer concentrations of  $^{14}C$



#### **Cosmic radionuclides**



Lukas Wacker, LIP, ETH Zürich

||| Ion Beam Physics

### **Cosmic radionuclides**

Annual mean wet <sup>10</sup>Be deposition (10<sup>-27</sup> kg/m<sup>2</sup>/s)



b Annual mean dry <sup>10</sup>Be deposition (10<sup>-27</sup> kg/m<sup>2</sup>/s)





#### Beer et al. 2012 / Wikipedia

lon Beam Physics

### **Production rates from <sup>14</sup>C and <sup>10</sup>Be**



#### **E** *H*zürich



### Synchronizing tree-rings with ice cores



#### **EH**zürich

# Time marker



Sigl et al. 2015

**EH**zürich

# Time marker

Fast changes in production

->

# Synchronization of archives



Sigl et al. 2015



### **Cosmic radionuclides**



#### **EH**zürich

III Ion Beam Physics

#### **Cosmic radionuclides**



III Ion Beam Physics

### **Cosmic radionuclides**







#### **Solar variations**





### **Fossile fuel emissions**



S. Djuricin, X. Xu, and D. E. Pataki (2012)

III Ion Beam Physics

### **Fossile fuel emissions**



R. Janovics et al. 2013








★ Input signal for radiocarbon cycle





- ★ Input signal for radiocarbon cycle
- \* Solar history / earth magnetic field





- ★ Input signal for radiocarbon cycle
- \* Solar history / earth magnetic field
- **★** Synchronization of archives





- ★ Input signal for radiocarbon cycle
- \* Solar history / earth magnetic field
- **\*** Synchronization of archives
- Trace anthropogenic <sup>14</sup>C sources / fossile fuel emissions

| | Ion Beam Physics

## **Radiocarbon calibration**



#### **EH**zürich

| | Ion Beam Physics

## **Radiocarbon calibration**



|||| Ion Beam Physics

## How was / is it measured?









|                   | AMS   | Decay<br>counting |
|-------------------|-------|-------------------|
| required quantity | l mg  | 1000 mg           |
| Measurement time  | I-2 h | 4 weeks           |



Lukas Wacker, Laboratory for Ion Beam Physics, ETH Zürich

#### **E** *H*zürich



### Southern hemisphere offset



Hogg et al. 2002

#### **EH**zürich

### **Extension of tree-ring curve**



| Ion Beam | Physics

# Change in offset?



### **Golden Handfeste of Berne**

| Sample     |           | Radiocarbon age |    | δ13C  |
|------------|-----------|-----------------|----|-------|
| Number     | Туре      | (BP)            | +- | (%)   |
| ETH36716.1 | parchment | 888             | 20 | -22.6 |
| ETH36716.2 | parchment | 878             | 19 | -20.7 |
| ETH36716.3 | parchment | 882             | 19 | -23.9 |
| ETH36716.4 | parchment | 875             | 19 | -22.3 |
| ETH36716   | parchment | 881             | 10 | -22.4 |

| Sample     |           | Radiocarbon age |    | δ13C  |
|------------|-----------|-----------------|----|-------|
| Number     | Туре      | (BP)            | +- | (‰)   |
| ETH36717.1 | seal cord | 800             | 20 | -24   |
| ETH36717.2 | seal cord | 808             | 19 | -29.1 |
| ETH36717.3 | seal cord | 833             | 18 | -25.5 |
| ETH36717.4 | seal cord | 808             | 18 | -27.1 |
| ETH36717.5 | seal cord | 800             | 17 | -27.7 |
| ETH36717   | seal cord | 810             | 8  | -26.7 |





### **Golden Handfeste of Berne**

| Sample     |           | Radiocarbon age |    | δ13C  |
|------------|-----------|-----------------|----|-------|
| Number     | Туре      | (BP)            | +- | (‰)   |
| ETH36716.1 | parchment | 888             | 20 | -22.6 |
| ETH36716.2 | parchment | 878             | 19 | -20.7 |
| ETH36716.3 | parchment | 882             | 19 | -23.9 |
| ETH36716.4 | parchment | 875             | 19 | -22.3 |
| ETH36716   | parchment | 881             | 10 | -22.4 |

| Sample     |           | Radiocarbon age |    | δ13C  |
|------------|-----------|-----------------|----|-------|
| Number     | Туре      | (BP)            | +- | (‰)   |
| ETH36717.1 | seal cord | 800             | 20 | -24   |
| ETH36717.2 | seal cord | 808             | 19 | -29.1 |
| ETH36717.3 | seal cord | 833             | 18 | -25.5 |
| ETH36717.4 | seal cord | 808             | 18 | -27.1 |
| ETH36717.5 | seal cord | 800             | 17 | -27.7 |
| ETH36717   | seal cord | 810             | 8  | -26.7 |









## **Calibration of the Handfeste**















### Calibration cure around 1220 AD























### Calibration of the seal cord



### Calibration of the seal cord



### Calibration of the seal cord





### **Precise dating of the Goldene Handfeste**

Parchment: old 1153 - 1214 AD new 1156 - 1217 AD

Same, but more precise!



#### EHzürich



### **Precise dating of the Goldene Handfeste**

Parchment: old 1153 - 1214 AD new 1156 - 1217 AD

Same, but more precise!

Seal cord: old 1217 - 1259 AD new 1222 - 1266 AD

Same, but more precise!



#### **E** *H*zürich



### **Radiocarbon wiggle-matching**



**EH**zürich

III Ion Beam Physics

## 775 AD event



Ion Beam Physics

### 775 AD event / 994 AD event



III Ion Beam Physics

### **Cosmic radionuclides**



Cosmic radionuclides, Beer et al. 2012

#### **EH**zürich



### **Radiocarbon wiggle-matching**



Oppenheimer et al. 2017

#### **EH**zürich



## **Radiocarbon wiggle-matching**



Oppenheimer et al. 2017

# **Species**

## Mostly Conifers:

- \* Cryptomeria
- ★ Pinus
- ★ Juniperus
- ★ Larix
- ★ Picea
- ★ Tsuga
- ★ Agathis



- ★ Lagarostrobos
- ★ Austrocedrus
- ★ Fitzroya



- ★ Betula
- ★ Quercus





lon Beam Physics





# **Comparison of chronologies**



III Ion Beam Physics

## Worldwide signal



#### **EH**zürich

lon Beam Physics

## Worldwide signal

SH nearly 5‰ lower than NH

Dendro records agree in timing



III Ion Beam Physics

## Worldwide signal


lon Beam Physics

# Worldwide signal



III Ion Beam Physics

# Worldwide signal



III Ion Beam Physics

# Worldwide signal

Exception???



| Ion Beam | Physics |

#### Hallstatt plateau: 2400 BP



| lon Beam | Physics

#### Hallstatt plateau: 2400 BP



**EH**zürich

















#### **EH**zürich



# 5600 BP



with Grongingen!







\* Tree-rings are the bases for precise radiocarbon dating



- \* Tree-rings are the bases for precise radiocarbon dating
- Radiocarbon calibration curve does not match up anymore



- \* Tree-rings are the bases for precise radiocarbon dating
- Radiocarbon calibration curve does not match up anymore
- It has more fine structure than expected that allows for more precise dating



- \* Tree-rings are the bases for precise radiocarbon dating
- Radiocarbon calibration curve does not match up anymore
- ★ It has more fine structure than expected that allows for more precise dating
- ★ (AMS) data is often offset



