¹⁴C - AMS

- Introduction
- Identification of ¹⁴C
- ¹⁴C concentrations
- Remarks for users

AMS Accelerator Mass Spectrometry

a method for measuring very small isotopic ratios

```
"very small" => radioisotopes
```

Basic Considerations

¹⁴C is a radionuclide,

why not counting the radioactive decay?

Basic Considerations

¹⁴C is a radionuclide,why not counting the radioactive decay?

sample with 1 mg C => $5.0 * 10^{19}$ C atoms modern sample, i.e. ${}^{14}C/C = 10^{-12}$ => $5.0 * 10^{7}$ ${}^{14}C$ atoms half life 5730 yrs => decay probability $3.9 * 10^{-12}$ s⁻¹ \Rightarrow for the 1 mg modern sample 0.7 decays / h low statistical error 50000 counts => 4 years

mass spectrometry (**MS**) does not wait for decay !!!10 µA current = 6.2 * 10¹³ ions/s => 62 ¹⁴C ions/s

Limitation of 'classical' MS

 ${}^{14}C^{+} = {}^{14}N^{+}$

 $28Si^{2+}$

 $^{12}\text{CH}_{2}^{+}$

- isobaric ions
- higher charged ions
- molecular ions
- resolution (tailing)
 10⁻⁵ level
- ¹⁴C intensity
- other background

note: single ones of these problems can be overcome, but not all of them simultaneously

¹⁴C - AMS

- Introduction
- Identification of ¹⁴C
- ¹⁴C concentrations
- Remarks for users

Limitation	of 'classical'	MS	
 isobaric ions 	${}^{14}C^{+} = {}^{14}N^{+}$	isobaric ions	
higher charged ions	$^{28}{ m Si}^{2+}$		•
 molecular ions 	¹² CH ₂ ⁺ , ¹³ CH ⁺	ions	a,
 resolution (tailing) 	10 ⁻⁵ level		
 ¹⁴C intensity 		molecular ion	IS
 other background 		other background	
note: single ones of thes	e problems can be overc	ome, ¹⁴ C intensity	

but not all of them simultaneously

Fig. R.Beukens, Radiocarbon after four decades, Springer-Verlag, 1992

Molecular ions

- ions fly in vacuum (10⁻⁶ mbar)
- but hit matter at the stripper

Fig. from P. Person et al., NIM A500 (2003) 55

isobaric ions higher charged ions molecular ions other background ¹⁴C intensity

Insertion: energy of ions

Highest e	fficiency for ${}^{12}C^{3+}$ is at 2.5 MeV		
1 eV = 1.6	$5022 \ 10^{-19} \ J \rightarrow 1 \ MeV = 1.6022 \ 10^{-13} \ J$	isobaric ions	
	Article Talk Read Edit View history Search Q	higher charged ions	
WIKIPEDIA The Free Encyclopedia Main page	e Electronvolt From Wikipedia, the free encyclopedia meV, keV, MeV, GeV, TeV and PeV redirect here. For other uses, see MEV, KEV, GEV, TEV and PEV.		
Contents Featured content Current events Random article Donate to Wikipedia	other background		

¹⁴C intensity

¹⁴C intensity

Insertion: energy of ions

¹²C charge states as function of energy (equilibrium thickness)

molecular ions in 3⁺ charge state break off

- \Rightarrow no background contribution
- \Rightarrow used at the old Jena AMS system

Second way:

molecules are also destroyed by impacts with

stripper atoms/molecules

thickness >
equilibrium
. thickness for q
side effects:
energy straggling
angular straggling

isobaric ions higher charged ions molecular ions charge $\geq 3+$ a) **b**) thick stripper lother background ¹⁴C intensity

so why?

no molecules → no 3+ charge state → not 2.5 MeV AMS systems with terminal voltages of 500 or 200 kV possible !!! (less costs, less space, less ion optical elements)

isobaric ions higher charged ions molecular ions charge $\geq 3+$ a) thick **b**) stripper other background ¹⁴C intensity

Remark: thickness of strippers

these values have large uncertainties (\pm 50 % ?)

ion energy	molecule suppression	stripper thickness
2.5 MeV	3+ charge state	$0.6 \ \mu g/cm^2$
500 keV	"thick stipper"	$2.2 \ \mu g/cm^2$

table is for argon \rightarrow 1 µg/cm² = 1.5 * 10¹⁵ atoms/cm² = 5.6 * 10⁻³ mbar m

isobaric ions higher charged ions molecular ions charge $\geq 3+$ **a**) **b**) thick stripper other background ¹⁴C intensity

Other background contributions

the start →
solved up to 10⁻⁵
Other processes to be
considered

higher energy reduces tails of peaks

isobaric ions higher charged ions molecular ions other background ¹⁴C intensity

example for background:

two "unlikely" processes but relevant for an *IR* of 10⁻¹² isobaric ions higher charged ions molecular ions other background ¹⁴C intensity

One solution is the detector

energy loss of ions in matter depends on the ion & its energy

other background

¹⁴C intensity

Detector

Detector

identification of ions in $(\Delta E, E_{\rm res})$ measurements

Detector

single ion counting \rightarrow ¹⁴C intensity no problem ($\Delta E, E_{\text{Res}}$) not required background ¹⁴C intensity

14C - AMS

- Introduction
 Identification of ¹⁴C
- ¹⁴C concentrations
- Remarks for users

¹⁴C concentrations

lesson learned:identification of ${}^{14}C$ wanted ${}^{14}C$ concentrations = ${}^{14}C / {}^{12}C$

trick: measurement of the ¹²C current

like weighing paper-clips instead of counting them

¹⁴C concentration
$$\propto \frac{{}^{14}C \text{ events}}{\int I_{12C}(t) dt}$$

sensitivity of AMS $10\mu A (q = 1) \sim 6.2 * 10^{13} \text{ ions/s} = 2.2 * 10^{17} \text{ ions/h}$ if $IR = 10^{-12} \rightarrow 2 * 10^{5} \ ^{14}\text{C} / \text{h}$

dedicated ¹⁴C-AMS set-up

this scheme correspond to the old Jena AMS facility

another dedicated ¹⁴C-AMS set-up

This figure shows the MICADAS, a system working with 200 kV terminal voltage

There are other major differences amoung the both AMS systems, e.g. the way to send the ¹²C, ¹³C, and ¹⁴C ions to the high energy side: Sequential and simultaneous injection

Indirect influence on performance through design requirements on beamline and magnets.

$^{14}C - AMS$

V

/

~

- Introduction
- Identification of ¹⁴C
- ¹⁴C concentrations
- Remarks for users

Remarks for the user

- o A¹⁴C result is not a number ! Its a value and an uncertainty !!!
- o Not all labs perform all chemical pretreatments
- **o** For normal requirements the AMS system do not matter.
- o What is "normal"?

feature	normal	very good
uncertainty of modern samples	0.5 pMC	0.25 pMC
background of processed sample	0.4 pMC	0.2 pMC
sample mass	1 mg	10 µg

Different (background) notations:

 $0.2 \text{ pMC} = 0.002 \text{ F}^{14}\text{C} = 2.4 \ 10^{-15} \ {}^{14}\text{C}/{}^{12}\text{C} = 50 \ 000 \ \text{yrs BP}$,,conv. age"

Uncertainties quoted mostly for 100 pMC with simple math (only statistical uncertainty):

uncertainty based on same effortBlack0.5 pMC @ 100pMCRed0.3 pMC @ 100pMC

Thank you for your attention !

Tours at combustion lab and AMS system: at the respective dates out of the elevator at ground floor, to the left, door with sign "¹⁴C-Analytik"