14C, paleoclimate, and the carbon cycle
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Glacial carbon cycle: where did the missing carbon go?

Radiocarbon calibration: problems and progress



Why are we here?

Climate change is linked to carbon cycle changes
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How do we plan for the future?
What does this have to do with paleoclimate?

July 2011



Our ability to predict future climate depends on getting

climate and carbon cycle models right.
Can they reproduce the past?

Last Glacial Maximum is a laboratory for testing climate models
Orbital changes, drier, dustier, colder, sea level -130m, reduced terrestrial
biosphere, changes in ocean chemistry and biology, pCO, 180-200 ppm

Radiocarbon provides a clock for climate change o= o .. =
AND a tracer for the carbon cycle of the past - . e i A i i
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Glacial climate: different base state PLUS rapid changes

Dansgaard-Oeschger (D-O) cycles:
880 in Greenland ice cores indicates rapid warming every ~1500 years
Widespread in Northern Hemisphere, not just in Greenland.
Likely cause: changes in ocean circulation
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Broecker’s Conveyor Belt
Meridional Overturning Circulation (MOC)

~ NADW formation

Different states of the
Conveyor:

Interstadial/Holocene “on”

Glacial “on”

Glacial “off” (Drop Dead
mode): NADW off.

NADW: North Atlantic Deep Water
AABW: Antarctic Bottom Water

What drives the conveyor (push vs pull)?
NADW formation?

Southern Ocean wind stress?

Downward mixing of fresh water and heat?



Multiple modes of the Overturning Circulation
D-O cycles are interpreted as shifts between “Modern” and “Glacial on”
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Figure 2. Hypothesized three states of the ocean’s thermohaline overturning: (a) modern conditions prevailing in
Holocene, (b) Glacial “on” state prevailing in interstadial (warm) events of the Pleistocene, and (c) glacial “off” state
prevailing in stadial (cold) events of the Pleistocene.

In models, the deep ocean reservoir is isolated in “glacial” conveyor modes.
Could this sequester enough carbon as DIC to explain pCO, drawdown?



Heinrich Events: MOC in the “off” state

Ice rafted debris in northern N.Atlantic
Rapid cooling in N. Hemisphere; S. Hemisphere warms (bipolar seesaw)
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Ficure 9-20 Diagrammatic section of the major subsurface water masses in the Atlantic Ocean, Line at 40°S
indicates approximate location of the section shown in Figure 9-21.

Ice sheets surge, meltwater cap covers the N.Atlantic
NADW shuts down, AABW fills the entire deep Atlantic

Ice rafted
debris (IRD)



Not a Heinrich Event, but is this the mechanism?
Larsen B Ice Shelf breakup, Feb 2002: 1 month, 500 km3
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Where 4C fits in: natural *C as a carbon cycle tracer
Made in the atmosphere by cosmic rays, mixes into the carbon cycle as CO,

Most of it decays in the deep ocean

14C ages: deep ocean > surface ocean > atmosphere

Atmosphere
775 (+3.8)

>

I

6.2

Surface ocean
1020 (+0.3)

Fossil fuels and
cement production

organic carbo

Dissolved |2

Intermediate and

A1 4C = 0%0

Marine
reservoir age

A1 4C — '50%0

Benthic- planktic
age difference

A14C — '1 60%0

Marine reservoir age: atmosphere-ocean '#C offset expressed as a radiocarbon age.
Benthic-planktic age difference: 1“C age difference between deep and surface ocean
Ventilation age: elapsed time since water was at the sea surface



What happens if *C production changes?

14C i“p“t 7:67 Agr;\:(:gg;;re
" RS To0s 62 Large atmospheric A'#C changes
o g p g

(bomb spike = +1000%o-)

Fossil fuels and
cement production

Surface ocean A'*C changes
much less
(bomb spike = +150%o)

Surface ocean
1020 (+0.3)

Deep ocean A'*C changes
diluted by the huge DIC
pool — this only responds to
long term changes

Dissolved |2
organic carbo

Changes in marine reservoir ages are a proxy for #“C production changes
Other cosmogenic isotopes (e.g. '°Be) co-vary



What happens if MOC is reduced or shut off?

1 4C i n put Atmosphere
& " Atmosphere and surface
o b g 90.8 1 6.2

ocean A'“C increase: newly
created %C is diluted in a
smaller carbon pool

Fossil fuels and

Surface ocean
1020 (+0.3)

Deep ocean A'“C drops:

reduced input of “C from

the surface cannot keep
up with decay

Dissolved |2

organic carbo

Carbon is sequestered in
the deep ocean via the
marine biota pool

Changes in benthic-planktic age differences are a proxy for MOC changes
('*C is one of many proxies: §'80, Cd/Ca, Pa/Th, §'3C, etc)



14C records from calcareous marine archives

Surface and deep corals, foraminfera

Collection methods:

Surface corals: core drilling

Deep sea corals: submersibles, ROV’s
Forams: sediment coring

Piston coring:
When sensors detect bottom, the weighted outer core
barrel is released to free-fall past a stationary inner piston
into the sediment.

This technique can retrieve tens of meters of core from
water depths of thousands of meters
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Foraminifera from ocean sediment cores

Planktic forams and reef corals record surface Archived ODP core

water and upper thermocline conditions
|

LEG

Benthic forams and deep sea corals record bottom
water

Typically, 500 — 2000 forams = 1mg of carbon

Picked individually from sieved sediment




To recap: was the missing CO.,in the deep ocean?

In models, the deep ocean reservoir is isolated in “glacial” conveyor modes.

The Dissolved Inorganic Carbon in the deep isolated reservoir has high pCO, and
very low 4C

14C is correspondingly elevated in terrestrial and surface marine carbon pools
Can we find radiocarbon evidence for this?

SOUTH Can Glacial state NORTH

\ O Core site

Poorly ventilated deep water
Low *C




Atmospheric A™C (%o)

High glacial terrestrial and surface marine A'“C
14C production changes based on paleomagnetic data cannot explain high A'4C
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Data consistent with (but don’t prove) deep ocean carbon storage
Steep drop during deglaciation = MOC switch-on?



Low A'4C in the deep North Atlantic >18 kyr BP

Is this the edge of the old deep water reservoir?
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a“c,,_ (permil)

High ventilation ages in the S. Atlantic ~20 kyr BP

Old deep reservoir?
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MOC turned on during deglaciation (?)

A“C in upper ocean/atmosphere/biosphere dropped by 200%o
How large and how old would the old reservoir need to be?
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Suppose the deep reservoir contained ~1/3 of the total ocean (>=2700m depth).

The required “C age is 7 kyr



Glacial deep ocean reservoir ages
Old, but are they old enough?
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Have we found where the CO, was hiding?

We do see high A™C in the atmosphere and surface ocean in the glacial.
We do see older bottom water in parts of the world ocean.
We cannot rule out the existence of a deep glacial reservoir of old DIC.

BUT
The observed *C depletions are too small.

The required *C depletions could not be maintained — too much turbulent
mixing.

Bottom sediments did not go anoxic.
No sufficiently large and old abyssal ocean reservoir has been found.

This may be part of the answer but it’s not all of it.
So what else is there?



Old water at thermocline depths

Core from 700m off Baja California

Chronology by correlating sediment
color (geochemistry) with
Greenland 680

2 events, coincident with pCO, rise
in air from Antarctic ice cores
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Very old intermediate water during deglaciation
From the Southern Ocean via Antarctic Intermediate Water (AAIW)?
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Pacific transect has lowest A'4C at mid depths — why?

Ronge et al., 2016, Nature Comm. 7, doi:10.1038/ncomms 11487
Depth transect off New Zealand, plus East Pacific Rise (EPR)
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Something new:

Do sea level changes alter rates of magma (and CO,) injection?
Lund and Asimow 2011, Geo3 12 Q12009

Milankovich cycles in Mid-Ocean Ridge (MOR) bathymetry?
Crowley et al 2015 Science 347: 1237
Tolstoy 2015 GRL 42: 1346
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Did spreading centers emit excess CO,?

Gulf of California is an extension of the East Pacific Rise
Is there evidence for anomalous CO, emission during deglaciation?
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Deglacial Gulf of California
Benthic and planktic foram A'4C records
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Deglacial planktic and benthic records in the Gulf of California are unique: both
show extreme “C depletions.

Possible causes::
i) extreme upwelling (several times as strong as today)
i) addition of old carbon to the bottom waters prior to upwelling



How this might work:

Sea level drops due to ice sheet buildup

Ocean stratified — lower circulation cut off from atmosphere
Delayed increase of hydrothermal CO, flux from MOR

Oldest water is at mid-depths, not bottom water

As ocean warms, stratification breaks down and CO, is released
Injection into the upper ocean may be regional or even local
More warming, sea level rises, eventually magma flux decreases
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Why was AA'“C (atmosphere — deep ocean A'4C
difference) so large in the glacial ocean?

Partly due to increased “C production
Partly due to carbon storage in the deep ocean

There’s still a missing piece: is it addition of mantle CO, during
deglaciation?



Why was AAC (atmosphere — deep ocean A'*C
difference) so large in the glacial ocean?
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Radiocarbon calibration: problems and progress

Global Carbon Cycle (1992-1997)
(in GtC)

Remember the basics:
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Cosmic rays make neutrons
Neutrons make “C (and °Be and
26Al and...).

Intermediate and

Solar and geomagnetic shielding
affect the cosmic ray flux interacting
with the upper atmosphere

Carbon cycle changes affect the
distribution of 1#C among carbon
reservoirs

All of these have varied over time



A14C (%0)

A'4C 0-15,000 BP

Long term changes are geomagnetic
Centennial-scale events are heliomagnetic
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14C calibration (IntCal13): the last 14kyr
Based on dendro-dated trees (“The Gold Standard”)
Regardless, there can be problems — be careful

Site selection for stressed trees.
Cross-dating.

Replication.

Precise and accurate, but...

X - : the year in which
overlapping overlapping overlapping the tree was
felled is known

1790 1800 1810 1820 1830 1840 1850 1860 1870 1950 1960 1970 1980

False ring? Missing ring




14C in tree rings: potential problems

Abrupt “C changes are invisible in 10-year data
Miyake et al., 2012: C ages changed by ~100 years 775-776 AD

Global A'*C increase (both hemispheres), probably from a Coronal Mass
Ejection event (not a comet, not a gamma ray burst, not a supernova....)

Abrupt A'*C changes have probably occurred throughout the 4C record
10 I ® AD 721-820

i %

A14C

-20 41

Sequoia (Junghun Park, UCI)

-30

T T T T
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10-year calibration data is NOT the whole story for short-lived samples



14C in tree rings: potential problems
11 year solar cycle is invisible in decadal data

Anomalously large solar cycle 2650-2680 BP?
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14C in tree rings: potential problems

Regional offsets or interlab biases (or both)?

Miyake et al 2013
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New for IntCal13: tree rings extended to 14 kyr

Floating Allerad pine joined to master tree ring series via dendro-dating
However, dendrochronology in mid Younger Dryas has problems

Radiocarbon age (yrs BP)
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14C Calibration in the early Younger Dryas

Patching the weak Northern Hemisphere section with Southern Hemisphere trees
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Radiocarbon age (yrs BP)
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New calibration results

We now have well replicated YD data from the Southern Hemisphere
NH data before 12.2 kyr BP shifted 50 years older in calendar time
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Long-term changes in geomagnetic field

Estimates from paleomagnetic signals in sediments
Short weak-field events plus long term increase from ~20 kyr BP (= *C decrease)
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High glacial A'“C — models vs data
C cycle box model forced with geomagnetic-based “C production
Production changes can explain some (but not all) of the high A'C
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14C Calibration beyond tree rings

Dendro-dated trees (to 14kyr only — few trees in Europe).
Lake Suigetsu macrofossils (varved lake).

U/Th dated speleothems — Bahamas, Hulu H82.

Cariaco Basin 58PC forams (marine varves).

Cariaco Basin ODP 1002D forams (sediment color matched to Hulu
Cave §'80).

e Other wiggle-matched marine cores (Iberian Margin, Pakistani Margin)
e U/Th dated corals (Barbados, Pacific).

All available records have significant problems.

However, if disparate records agree, the data probably approximate a true
representation of A'*C over time.



Speleothems as 4C archives

Formed from supersaturated cave drip waters.

Clean, dense, calcite - closed for U-Th and for '4C - sometimes.
Dateable by U-Th with minimal detrital Th corrections - sometimes.
14C must be corrected for Dead Carbon Fraction (DCF) — always!
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Open vs closed system equilibration

DCF correction: compensates for incorporation of “dead” (and/or old) carbon

Closed system: 1 mole of CaCO, will neutralize 1 mole of H,CO,
Open system: continuing exchange with gaseous CO,
Soil CO, is very close to modern, CO, in the epikarst may be old
Continuous soil ey et Soil remaining {'n karren Noronha et al., 2015 ’ QSR
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Speleothems as climate archives: Hulu Cave 430

e 080 influenced by monsoon strength (ITCZ): D-O and Heinrich-like features
e U/Th: Wang et al., Science 294 (2001) 2345 , Yuan et al. Science 304 (2004) 575
e Extended hi-res 8'80: Wu et al. Sci. in China D 52 (2009) 360
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14C Age (Kyr)

H82 DCF is constant across the Younger Dryas

Hulu 680 record shows major climate/monsoon variations
Why was DCF so stable across hydrologic/vegetation changes?
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H82, MSD, MSL: 10 — 50 kyr record

Three speleothems overlap and give consistent results

Figure S1
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Why was the Hulu DCF small and stable?

The answer is above the cave (and in the museum)

Tangshan National Geopark Museum, Nanjing

Hulu Location 2




To emtrance

H82 MSD and MSL all formed under sandstone

Meteoric water equilibrates in the soil layer, not in the karst.
Open system conditions = low DCF, probably true for the entire record

To entrance
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14C Calibration: Hulu vs IntCal09 and IntCal13

10-33 kyr: Hulu and IntCal13 agree
31-42 kyr: Hulu and IntCal09 agree
>42 kyr: Hulu A'#C lower than ‘09 or ‘13
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The Last Word

14C calibration data evolves: every version is different.
NEVER quote calibrated ages without also giving the original 14C data

In critical cases do NOT just rely on the calibration curve: look at the
calibration data itself

IntCal13 plots at www.radiocarbon.org (IntCal13 Supplementary Information)

IntCal1 3 database at www.chrono.qub.ac.uk (Resources)

8 huep:/ /www.radiocarbon.org/ ¢ | (Qr Google
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