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Estimates of fossil fuel CO, emissions are based on
accounting of activities according to standard
practices (“bottom-up” estimates)

Activity Emission

Emissions = X
Data Factor

Verification done by auditing

Atmospheric observations could provide
independent (“top-down”) validation

Bottom-up estimates might not include
temporal or spatial variations in
emissions

Other types of fossil fuel emissions
(methane, aerosols) have higher
uncertainties




The application of A'4C to identify fossil
fuel influences has a long history
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Calculating fossil fuel-derived CO, using A4C
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Calculating fossil fuel-derived CO, using A4C

The mixing model we looked at earlier:

Approximate mass balances for carbon and *4C, considering
the addition of CO, from a source (s):

Cm =Cbg + Cs Cm Am = Cbg Abg + Cs As

The change in A“CO, is the difference between the measured
(m) and the background (bg) before the source was added:

Am — Abg = Cs/Cm (As — Abg)
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Calculating fossil fuel-derived CO, using A4C

The mixing model we looked at earlier:

Approximate mass balances for carbon and *4C, considering
the addition of CO, from a source (s):

Cm =Cbg + Cs Cm Am = Cbg Abg + Cs As

The change in A“CO, is the difference between the measured
(m) and the background (bg) before the source was added:

Am — Abg = Cs/Cm (As — Abg)
Flipping this around: Cs = Cm (Am — Abg) / (As — Abg)

For fossil carbon: Cff = Cm (Am — Abg) / (-1000 %o — Abg)
= Cm (Abg — Am) / (Abg + 1000 %o)
Alternatively: Cff = Cbg (Abg — Am) / (Am + 1000 %o)



Example

In 2017, what is Cff if a decrease of 5%0 below Abg is
observed?

Cff = Cm (Abg — Am) / (Abg + 1000 %o)



Calculating fossil fuel-derived CO, using A4C

Aircraft profiles above Colorado, USA

Cm = Cbg + Cff + Cbio

In urban area, CO, increase is
mirrored by A“C decrease

In rural area, strong CO,

increase with very little
change in A14C

Graven et al. 2009
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Long-term observations of Cff in Germany

Urban sites show A4C
depletion relative to
background observations
in the Swiss Alps

No long-term trend in Cff
— consistent with steady
emissions inventories in
local region
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Not only tree rings but
also annual plants have
been used to record
atmospheric AC
variations
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Applications using A*C measurements to trace
Cff also often incorporate other tracers

Other tracers can be easier to measure and some can be
measured continuously

They provide additional information on the sources of Cff

For example, more CO is produced per ppm of Cff by motor
vehicles than by power plants, and 6%3C is lower in natural gas
than in coal or oil

A14C can be used to “calibrate” the CO/Cff emission ratio in a
particular region or time period



Atmospheric AC and 6*3C in Los Angeles
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Calculating fossil fuel-derived CO, using A4C
For fossil carbon: Cff = Cm (Abg — Am) / (Abg + 1000 %o)

However, there may be other influences on Am that we need
to account for to accurately estimate Cff



Calculating fossil fuel-derived CO, using A4C
For fossil carbon: Cff = Cm (Abg — Am) / (Abg + 1000 %o)

However, there may be other influences on Am that we need
to account for to accurately estimate Cff

Cff = Cm (Abg — Am) / (Abg + 1000 %o) — B

B =Cs (Abg— As) / (Abg + 1000 %o)



Respiration of biospheric carbon

Cff = Cm (Abg — Am) / (Abg + 1000 %o) — B
B = Cs (Abg—As) / (Abg + 1000 %o)

Disequilibrium of i o]
biospheric carbon 3 e [T
depends on turnover g oo o s SN
time @ 400

:E 300
In the bomb period, 2
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In the post-bomb
period, most biospheric
AYC is higher than Figure from

atmospheric CO, Lassey et al. 2007
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Example

In 2017, what is Cff if a decrease of 5%0 below Abg is
observed?

Cff = Cm (Abg — Am) / (Abg + 1000 %o) - B

What is B if there is 20 ppm of CO, added from
respiration of biospheric material that is 20 %o higher

than Abg?
B = Cs(Abg—As) / (Abg + 1000 %o)



Simulations from global models suggest B is generally
less than 1.5 ppm in magnitude, positive over land
and negative over the ocean

Simulations for ~2005

Using air at higher elevation
(3.5km) to specify
background

Using LMDZ atmospheric
model, CASA pulse response
functions for respiration, and
extrapolating available
ocean data

Turnbull et al 2009
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14C is produced in nuclear reactors and observations
show enhanced A'4C in CO, near nuclear power plants
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Regional A'C gradients from nuclear emissions
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Simulations for 2005 using the TM3 model at
1.8x1.8° resolution, Graven and Gruber 2011

A¥C enrichment strongest
near fuel reprocessing and
high-emission reactor sites
in the UK and France

A¥C enrichment can extend
several hundred kilometers
(several model grid cells)
away
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Counteracting effect of nuclear emissions on Cff
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Simulations for 2005 using the TM3 model at
1.8x1.8° resolution, Graven and Gruber 2011

Nuclear A1*C enrichment
can counteract fossil fuel
A14C dilution

Compensates more than
10-20% of fossil influence
over large regions

Strongest nuclear AC
enrichment can
compensate more than
50% of fossil fuel dilution

21



Predicted large-scale effect of nuclear power
emissions has been observed in Ontario, Canada

. Egbert site near Toronto
Background —— Observations " )
—— STILT/EDAS-EDGARVA4.1 3 HWR “CANDU" reactors
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AYC [permil]

Predicted large-scale effect of nuclear power
emissions has been observed in Ontario, Canada

Egbert site near Toronto
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Atmospheric transport modelling is needed to
connect atmospheric concentrations to emissions

“Footprints” mapping the
influence on observations —
composite for California network

Combine with flux maps in
Bayesian inversion to produce
“top-down” estimate of
emissions

40

32

Using meteorological fields from
the regional atmospheric model
to calculate back trajectories of
particles, e.g. Lagrangian particle
dispersion modelling with the
WRF-STILT model

Concentration/Flux
x 10 ppbi(nmal m 75"
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Observing System Simulation
Experiments (OSSEs) show
promise for validating regional
emissions estimates

Basu et al. 2016 incorporated 14C
into the NOAA CarbonTracker
inversion system

OSSEs indicate that A4C
observations can be used to
estimate fossil fuel emissions

They also improve estimates of :
biospheric fluxes by eliminating w
potential biases from bottom-up

fossil fuel emission estimates
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Ambitious proposal in Europe to incorporate *C into a
fossil fuel emission monitoring system

Independent verification of emissions
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Challenges to using A'4C as a fossil fuel tracer

* Lack of atmospheric AC data
* Measurement uncertainty
e Background uncertainty

* Uncertainty and lack of data on non-fossil
influences on A'4C (B)

* Respiration
* Nuclear power plants

 Atmospheric transport uncertainty
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Observational networks for A4C in CO,
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Forthcoming changes in A*CO, have
implications for various applications of 14C
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Sensitivity to fossil fuel CO, is decreasing,
necessitating higher precision measurements

Sensitivity: (Am — Abg)/Cff = - (Abg + 1000 %0)/Cm

Currently -2.6 %o ppm™!

Cbg
Abg Cm For RCP8.5

Am in 2050: -1.6 %o ppm"?
#AErveA

in 2100: -0.8 %o ppm™?
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Radiocarbon in atmospheric methane
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Radiocarbon in atmospheric methane provides a
primary constraint on the fossil fraction of emissions

Fossil sources of CH, have Aff =-1000 %o

Biogenic sources of CH, track the AC changes in atmospheric CO,,
incorporating the turnover time of the substrate

However, nuclear power plant emissions of 14CH, are relatively more
important for A¥CH, than for A*CO,
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Summary

AC is a powerful tracer of fossil carbon for CO,, also for CH,
and aerosols

Applications using atmospheric measurements to observe Cff
are actively being developed, some combining measurements
with atmospheric models to estimate emissions

Challenges include lack of data, measurement uncertainty,
uncertainty in background and other influences on A4C

Sensitivity to Cff is decreasing as atmospheric A*CO,
decreases and CO, concentration increases
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