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Notation and mixing model concept

| will use A*C in per mil (%o0), including fractionation and age
corrections (defined as A in Stuiver and Polach 1977)

Approximate mass balances for carbon and '#C, considering
the addition of CO, from a source (s):

Cm =Cbg + Cs Cm Am = Cbg Abg + Cs As

The change in A'%CO, is the difference between the measured
(m) and the background (bg) before the source was added:

Am — Abg = Cs/Cm (As — Abg)

The sign and the magnitude of the change in A**C depends on
the amount Cs and the difference in A%C, the “disequilibrium”

(As — Abg)



Preindustrial period

14C is produced naturally in the
atmosphere

14C participates in the carbon
cycle
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Cosmogenic *C production occurs primarily in
the high latitude stratosphere
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Preindustrial period

14C is produced naturally in the
atmosphere

14C participates in the carbon
cycle
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radioactive decay

AC standard defined to be
similar to preindustrial

troposphere

Cosmicrays

s

Y Y Yy
Protons| - e e Sun
o R :l*~':”“—r
ﬁ'i il i
: Ir--r B [t

L

.--"H'?:.-\-\.I'IIIF{:."'. \\--

S g R e
Solar- A L g
wind, a0
plasma <= —=

~ Geomagnetic field

O " Cosmiceray shower
{ = Stratosphere
g +50%o0

[ ] CHN(npYHCe
L W™ GE_‘HCD—I_D iE
- BCO+0H ¥MCO,+H E._féTroposphere

1‘ A4C = 0%o

Deep Ocean
-100 to -250%o0

Jockel and Brenninkmeijer, 20805



Preindustrial ocean A14C distribution

Based on oceanic survey data and estimates of
anthropogenic 1C (GLODAP)
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Preindustrial ocean-atmosphere exchange resulted in
higher A'4C in the Northern Hemisphere, as observed
in several studies of tree rings
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Early industrial period

14C is produced naturally in the
atmosphere

14C participates in the carbon
cycle

Biospheric and oceanic carbon
are depleted in *C due to
radioactive decay

AC standard defined to be
similar to preindustrial
troposphere
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to the atmosphere through
fossil fuel combustion
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“The Suess Effect” — Dilution of
atmospheric 14CO, by fossil fuel-

derived C-free CO,

Hans Suess, Science, 1955

Radiocarbon Concentration
in Modern Wood

Redeterminations of the absolute C14
concentration in wood carbon and of its
variations since the industrial revolution
became widespread in the late 19th cen-
tury were carried out (I) by means of
proportional counting of acetylene as
described previously (2). No direct de-
termination of the counting efficiency was
made, but the counting rates were com-
pared with those from material contain-
ing a mass-spectrometrically determined
amount of artificial C14, obtained from
the National Bureau of Standards
through the courtesy of H. H. Seliger.

Indications of a decrease in the specific
C1* activity of wood at time of growth
during the past 50 yr had been found
previously (3). The decrease amounted
to about 3.4 percent in two trees from
the east coast of the United States. A
third tree, from Alaska, investigated at
that time, showed a smaller effect. The
decrease can be attributed to the intro-
duction of a certain amount of Cl4-free
CO, into the atmosphere by artificial
coal and oil combustion and to the rate
of isotopic exchange between atmospheric

CO, and the bicarbonate dissolved in the

oceans.
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Early industrial or “Suess” period —

“The Suess Effect” in the global carbon cycle
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Rafter and Fergusson, Science, 1957

“Atom Bomb Effect”—Recent
Increase of Carbon-14 Content
of the Atmosphere and Biosphere

In a study of C!* variations in nature
(1), collection of atmospheric carbon
dioxide for the measurement of its G'*
activity commenced in New Zealand on
24 Nov. 1954. The first three results
were reported (1) in 1955, and the mean
value +3.73 percent with respect to the
New Zealand wood standard apparently
agreed well with Craig’s predicted value
of +3.68 percent (2). There was, how-
ever, in these results an indication that
the C!4 content of the atmosphere was
increasing; hence, the sampling program
was continued to check whether or not
there was a seasonal variation or a C'*
enrichment of the atmosphere by atomic
explosions. Nine samples of air have
been assayed since 3 June 1955. The re-
sults indicate a steady increase in the C*
content of the atmosphere. Duplicate
samples collected over the period 12
Dec. 1956 to 23 Mar. 1957 have assayed
+7.60 £ 0.03 percent and 8.05 £ 0.30 per-
cent with respect to the New Zealand
wood standard. Taking the average value
+7.83 percent for the C'* enrichment of
air for the first 3 months of 1957, these
results show that the C'¢ content of the
atmosphere of the Southern Hemisphere
has increased by 4.10 £ 0.5 percent since
February 1955.



“Bomb Period”: Nuclear weapons testing caused
intense production of 14C in the atmosphere
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ATMOSPHERIC NUCLEAR TESTS (1945 - 1980)
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Inventory of bomb 14C in different reservoirs
evolved over time as a result of carbon cycling
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A'cin Co,

Imagine if there were no fossil fuel emissions, but there were nuclear
weapons tests - what do you think the atmospheric A4C history
would have looked like?

sool T Simulations using simple carbon
el No Bombs cycle model
No Fossil

600
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* Similar to observed trend
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i * Weaker trend than observed
2007 after 1990
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100} e e * Indicates atmospheric A14C

1950 1960 1970 1980 1990 2000 would now have been -100 %o
due to fossil fuel emissions

Graven, unpublished
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Observed sea-air A1*C gradients show switch to 1*C outgassing
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How will atmospheric A'*C evolve over this
century?
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A wide range of A%CO, trajectories are simulated
using the RCPs and a simple carbon cycle model
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Surface Ocean
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Model simulations
of future ocean A'%C

4-100

: _ -150
ECCO ocean model forced with —— Sre ool ~200
atmospheric A*C observations
and projections
(Khatiwala 2007; Graven et al.
2012)

—250

Constant ocean circulation

Gas exchange velocity of
15 cm/hr (Sweeney et al. 2007)

Khatiwala et al., in rev. 31
60°S  40°S 20°S 0° 20°N  40°N



Forthcoming changes in A*CO, have
implications for various applications of 14C
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Summary

Nuclear and fossil fuel perturbations have caused dramatic
changes to A'%C in atmospheric CO,

Disequilibria with the stratosphere, ocean and biosphere
have evolved over time and, in some cases, changed sign

Now that several decades have past since the bomb tests,
fossil fuel emissions are becoming more and more dominant
in driving A1%C trends and gradients

AC in atmospheric CO, will reach 0 %o in the next couple of
years, and depending on fossil fuel emissions, may decline to
-250 %o by the end of the century, impacting various 4C
applications
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Carbon isotopes in CMIP
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