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Global Flows of Carbon (Pg C/yr)
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GLOBAL CARBON
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Global carbon budget 2016

COs flux (Gt COsx/yr)

Why is the land currently a C sink?

Data: CDIAC/NOAA-ESRL/GCP/Joos et al 2013/Khatiwala et al 2013
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CO,, fixation rate

Most Plants use the C3 Photosynthetic Pathway

CO, competes with O, for Ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO)

Photorespiration Photosynthesis
(Calvin Cycle)
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cLoeaL carson Changes in the budget over time
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Land-Atmosphere C Exchange:

Large Opposing Fluxes
Photosynthesis
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How Can We Quantify the Land C Sink?

Land-atmosphere CO, exchange Vegetation and soil C inventories
(Net Ecosystem Exchange) & Remote sensing
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Carbon Flow in Terrestrial Ecosystems:
One way in, Many Paths for Return
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Big Questions in Terrestrial C Cycle Research

How productive is the terrestrial biosphere, and
how resilient are terrestrial ecosystems to changes in
atmospheric CO,, climate, and disturbance?

* How do plants allocate C above- and belowground?

e What is the make-up of future plant communities?

How much Cis in terrestrial ecosystems, and
how vulnerable is it to changes in climate, disturbance,
and land use?

 Why and how fast does C accumulate in soils and how rapidly
can it be re-mobilized?

* On what time scales will soil formation limit plant species
migration?



How productive is the terrestrial
biosphere, and how resilient are
terrestrial ecosystems to changes in
atmospheric CO,, climate, and
disturbance?

How do plants allocate C above- and belowground?



C Uptake and Tree Growth in a Boreal Forest

“The lack of relationship between ring width and gross ecosystem
productivity (canopy-scale photosynthesis) may indicate that ring growth is
controlled almost entirely by something other than C uptake.”
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Where did the remaining
assimilated C go?
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A lot of C is used to Feed Soil Microbes
via Root Exudation

N-fixing bacteria

N,+8H*+8e -

2 NH, + H, N- & P-mining
ectomycorrhizal fungi
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Enriched Background Isotope Study (EBIS)
An opportunistic *C-labeling study
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Local incinerators produced
a significant source of

plant sugars and starch
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Root-derived C (>60%), not recent (<4 yr old) leaf litter (<6%),

is the major source of microbial C in a temperate forest mineral soil

Ultisol: Walker Branch

Low-14C litter

High-14C litter

Entisol: Haw Ridge

Low-14C litter

High-14C litter
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Boreal forest
Manitoba, Canada

C Allocation in Boreal
Black Spruce Forests

Label application
1. Bicarbonate solution <
2. Acidified to release CO, ' o #

3. Circulated 4CO, through g,
dome enclosure 1 hour

4. Produced a AYC signature
~100,000 %o




Chasing a *C Pulse over 4 hours to 30 days

Measurements of the CO, flux and isotopic content (A*C) of dark respiration

P
oo
.

1. Soil Surface 2. Canopy 3. Ecosystem
* Moss and grass * Needles

* Roots * Stems

e Soil

4. Incubations 5. Soil gas

e Excised roots * Multiple depths

e Moss and grass



A'C in Respiration
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Timing of Label Respired

Mean Residence Time
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Allocation of Label:
% Respired Aboveground

Percent of Label Respired
Per Day
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How do Trees Allocate C in relation to Life

Strategy and Climate?
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Growth Rates of Oaks Across their Range

Evergreen Q. agrifolia
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14C of Wood vs. Sugars & Starch (nonstructural C)
in Mediterranean Oaks
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In all oak species,
nonstructural C was younger
than the structural material
from which it was extracted

No obvious differences in
soluble nonstructural C
concentrations between
species, life strategies or
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FM CO,

C dynamics in Mediterranean oak trees
14C of Wood vs. Sugars & Starch
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Oaks

Across the oaks’ range,
not climate, but “vigor”
(growth  rate) largely
controlled the size, age

and allocation of
nonstructural C  pool,
faster-growing trees

respired more and stored
(by inward mixing) less of
their nonstructural C

Mature trees accumulate
years-to-decade-old
nonstructural C across a
wide climatic range
(tropical, Mediterranean
and temperate) to fuel
respiration and recovery

Emmerson and Starr (fast) (b)Sedgewick and Hastings (slow)

—— Atmosphere
—— Median
Min-Max
Q05-Q95
e  Observations
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Trumbore et al. 2015. Tree Phys




Emerging Picture of Plant C Allocation

Light, temperature, relative humidity,
water supply (influencing stomatal

conductance); mesophyll

conductance (2.1, 3.6)
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How much Cis in soils?

Where are large soil C stocks?

How much Cis in terrestrial
ecosystems, and how vulnerable is it
to changes in climate, disturbance,
and land use?

Why and how fast does C accumulate in soils and
how rapidly can it be re-mobilized?



Soil carbon [Pg C]

NPP [Pg C yr']

How much Cis in Soils?

Global soil C varies 5.9-fold across modeli
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Where is Soil C?

C density simulated by 11
Earth System Models

BCC-CSM1.1

Observed C density

Northern Circumpolar Soil Carbon Database
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Todd-Brown et al. 2013. Biogeosci



Soils ecan-be are Complicated High Arctic

Gelisol, Thule, NW Greenland
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Typical soils: C stocks decline and become older
with depth; mineral composition matters

a Soil carbon (%) A14C of SOM (%)
50 b -0 600 200 200
0 . L : .
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In volcanic soils, metastable shortrange-order minerals (allophane)

provide a mechanism for long-term stabilization of organic matter in soils.
The soil’s ability to accumulate C increases during the first 150 kyr of soil development as
the parent material weathers to metastable, non-crystalline minerals. Thereafter, the
amount of non-crystalline minerals declines, more stable crystalline minerals accumulate,
and the soil’s C content decreases by 50% over the next 4 Myr.




“After soils are born, they have a life...”

Chronosequence of soil development on
the Hawaiian Archipelago
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In ancient felsic soils, mineralogy is the most important
explanatory factor for C content (crystalline Fe) and
turnover time (amount of smectite)

Bulk soil is a complex mixture of C that
cycles between the atmosphere and the

30’39'0"E M 'EI)'G"E 31°3IG‘O'E 32“(?‘0"E 32’39'0"E

—— [ ] granit.e | ooean0's . .
o s land on very different time scales

, S borte

- O nephelinite
200 2300 Carbonate-free bulk

A - %C =1.94% 100% Cr
" - 813C=-14.9 %o
A1C = -16%. (TT=385Y)

23730075+ -23°300's

24°0'0"5

24730073~

25°0'0"5

25730075

|:| Granite
[ sasalt
I rnyoite

[ ] sediments

|:| Gabbro

0 15 30

N

A

[F24°0'0"3

[F24°3000°5

2570078

257300

30°300°E

32°300°E

Non-clay (includes LF)
%C =1.5% 63% Cy
d13C=-16 %o
AMC=-+149%. (TT=30Y)

v

Clay
%C =25% 47% Cy
d13C =-14.1 %
AMC=-125%. (TT =1280y)

SPT
(1.7 SG)

Flotation,
2% H,0,

v

s

Roots
813C=

-16.6 %o

AlC=
+76%e

LF

%C =11.6 % <20% CT
813C=-16.6 %o

A14C = +60%.
(TT = 4,125y)

HF (includes clay)
%C=18% 84%Cy

613C =-14.8 %.

AMC = -23%. (TT =425y)

Khomo et al. 2017. Soil




[Pg C]

[PgCyr]

300 -
200
o HH HH
-100 —
-200 -
60 -
50 - o
40 -
30 - |
20 - ] e
10
0 =
0
Tl
-4 ~ - L |
_E._ e ]
_a_ I
_12— —
_14_
QS EWSERS23S
R SRR
sz22320 5237
pwuoBQoIACSg T
S L@ LD S o
2 o

215t century absolute change
in 11 Earth System Models

Land C sink 2100?

Predicted changes in soil C:
-20to 360 Pg Cor +30% C in 200 yrs

In coupled models, C-concentration
feedback dominates, rel. sink strength
(%-soil C change) depends mostly on
rising atmospheric CO,~> NPP = soil-C

CESM1(BGC)

NorESM1-ME

BNU-ESM

P ] S
- i -
BCC-CSM1.1(m) HadGEM2-ES IPSL-CM5A-MR
L -
4 : = : - A @,
L...
GFDL-ESM2G CanESM2 INM-CM4
- P *
= g'*i;:_ creadd ‘_{:‘
(7 ] o
4
1 W
MIROC-ESM MPI-ESM-MR
Ly T ~uah :
N nEy 7 ’
i, e}
W B v ' A
1 g\ L 4 ’
:] “§ o o =0
4 : ¥
IIIII T T T T
120 -60 20 Bl

10> [kgm

-10<

Todd-Brown et al. 2014. Biogeosci



Land sink 21007

Soil 14C offers a constrain on future accumulation rates

Sites

§3§é$ﬁ$$$

ProfllesHWSD CESM GFDLHadGEMlPSL MRI
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Compared '#C data from 157 globally
distributed soil profiles (0-1 m) to soil C
simulated by Earth System Models

ESMs underestimated the mean age of soil C
>6X (430 + 50 vs. 3100 + 1800 yrs)

- ESMs overestimated C sequestration
potential of soils 2x

ESMs must better represent C stabilization
processes and the turnover time of slow and
passive reservoirs when simulating future
atmospheric CO, dynamics

He et al. 2016. Science



Vulnerability of the Carbon Cycle in the 21%t Century

Hot Spots of the Carbon-Climate System

Canadell et al. 2007

Many Pools and Processes not included in Earth System models



cLoeaL carson TOtal global emissions
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Total global emissions: 41.9 == 2.8 GtCO, in 2015, 49% over 1990
Percentage land-use change: 36% in 1960, 9% averaged 2006-2015

Dlata: CDIAC/IGCF’
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Three different methods have been used to estimate
land-use change emissions, indicated here by different shades of grey
Source: CDIAC: Houghton et al 2012: Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016



http://cdiac.ornl.gov/trends/emis/meth_reg.html
http://www.biogeosciences.net/9/5125/2012/bg-9-5125-2012.html
http://onlinelibrary.wiley.com/doi/10.1002/jgrg.20042/abstract
http://dx.doi.org/10.5194/essd-8-605-2016
http://www.globalcarbonproject.org/carbonbudget/

Land Use Change: Forests

Légen'd_% B
| No forest transition identified
I 19th century

B 1900-1940

[ 11940-1970

|| After 1970 & " = Projection: Equidistant cylindrical
| Net reforestation since 1990 in FAO FRA 2010, forested countries only Datum: Sphere

[{h Meyfroidt P, Lambin EF. 2011.
Annu Rev. Environ. Resour. 36:343-71

How can we reconstruct land cover and its dynamics?




Dynamics of Northern Forests can be
Reconstructed based on Tree Rings

Pine tree with annual growth rings
San Jacinto Wilderness, CA, USA

.3




Reconstruction of the Boreal Tree Line via 14C

~ Age (yr B.P)

Position of low-
albedo, C-rich boreal
forest affects the
Earth’s energy budget

Min'.‘zimft of tree Betula
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MacDonald et al. 2000. Quart Res
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* Forest advanced to
current Arctic
coastline between
9-7 kyr B.P.

e Forest retreated to

oA

B & w  current treeline
position by
4-3 kyr B.P.



Dynamics of Tropical
Forests can be

Reconstructed via 14C
Many tropical trees either lack growth rings

or growth rings occur with random
(non-annual) periodicity

Vieira et al. 2005.PNAS
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Emissions in the 2000s were lower than earlier decades, but highly uncertain
Higher emissions in 2015 are linked to increased fires during dry El Nifio conditions in Asia

Qata: GCP . . . . ' .
= Indonesian
> & fires
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Global Carbon Project

Three different estimation methods have been used, indicated here by different shades of grey
Land-use change also emits CH, and N,O which are not shown here
Source: Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016



http://www.biogeosciences.net/9/5125/2012/bg-9-5125-2012.html
http://onlinelibrary.wiley.com/doi/10.1002/jgrg.20042/abstract
http://dx.doi.org/10.5194/essd-8-605-2016
http://www.globalcarbonproject.org/carbonbudget/

What Burnt during the 2015-2016 El Nino Fires
in Indonesia and Malaysia?

50
Sept. — Oct. 2015: Indonesia experienced . -
exceptionally active fire season o 40

exacerbated by El Nino-induced drought

O°N
The resulting haze event caused 100,000
premature deaths in Indonesia, 5 °s

e
Malaysia, and Singapore %}:fid
Wiggins et al. In Prep.
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%= Airborne fine particulate matter (PM, ;)
Weekly (7-18 days on 37 mm filters (ADR1500)

Daily on 47 mm (URG)

| Collected at the National University of Singapore
M 1°17'56.65"N, 103°46'16.62"E

2014 fires 2015 fires
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2014 fires 2015 fires
(SW monsoon) (SW monsoon) During the fire season,
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Keeling Plot Reveals
Mean Age of Fire Emissions

0 A | | | | | [
-60%o0
-100 ® Fire Season 2014  _|
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Wiggins et al. In Prep.



Peat Burning (not crop residue or deforestation)
dominated the 2015-2016 El Nifho Fires in
Indonesia and Malaysia

3
1L‘lc;‘-\tm.:)s.phere 1/7C (ng/m )
\I/ B I I I
200 —————————— —— Atmosphere
14CNPP ——— Agricultural Waste Burning
600 - 100 — —— Deforestation T
—— Best Fit
Oor ® Aerosol Observations

_400 100} | .
o 1 1 1
S 2000 2010 _
& Keeling plot

intercept

— | -60%
14Cbiomass \ °

u 1920 1940 1960 1980 2000
14¢ Year
Radioactive decay

14C e anon
Wiggins et al. In Prep.



The Arctic is Rapidly Shifting to a New State

Complete loss of summer sea ice by +6-122C MAT by 2100 (RCPS.5)

<2020 (extrapolation of sea ice volume data),
2030 + 10 yrs (incl. rapid loss events, e.g. 2007),
>2040 (climate model projections)

September Arctic Sea Ice Concentration, 1979 to 2014

(°C)

Septem ber 1 979 Credi: Natlonal Snow and Ice gﬁ:ﬁ:ﬁ; 10 20 30 40 50

I [ T (%)

Overland & Wang. 2013. GRL Summary for Policymakers. 2013. IPCC



Permafrost Thaw will
Expose Vast Soil C Stocks| ..

The northern circumpolar
permafrost zone contains vast

amounts of C, much of which | ®&-" o & % &L ..
has been disconnected from ¥ e f — i

the global C cycle for millennia | schuuretal. 2015 nature ¢ —
1,035 + 150 Pg C (0-3 m depth)

50% of global soil C
Rest of the word (excluding Boreal
& Arctic): 2,050 Pg C

~1-1.5x atmospheric C: 829 Pg C

Current permafrost area
Projected permafrost area
(2100)

[ | Projected sea ice
(2070-2090)

http://news.bbc.co.uk/2/hi/science/nature/4120755.stm



Long-Term Summertime Warming x Wetting
of High Arctic Tundra (>70°N)

\
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Climate Change 1 High Arctic C Sink Strength
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Current -6.3+0.8 to
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Warming-only  -3.9+1.8

L

GPP (C uptake)

Warming x -76.8+1.3 to

Wetting -110.6%2.7
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Climate Change q* Old C Emissions

Sources of R, are similar among treatments and mostly modern

Bare areas emit older C than vegetated areas
R.o, IS Older in warmer summers (deeper thaw)

R..o IS Younger in wetter summers

Wetting transfers young (surface litter) C to depth where it is decomposed

Deep active layer is wet & cold

100
Bare Vegetated

80 - f
= 60 § % §
I= 2010 §
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C +4°C  +4°CxW W C +4°C  +4°CxW W

Lupascu et al. 2014. Nature CC; BGS



Polar night, Spitzbergen

Photo by J. Welker




What is the Annual C Budget of different

Tundra Ecosystems?

What are non-summer microbial C sources?
Can we monitor permafrost C emissions?

Winter C loss

15 1< > < > - 15
) : - 20
o : - 15
Cumulative C exchange ~L 10
05 - " _‘r_/--,_/“
-~ |} 5
n L " = LI ;— - -:;- L] L} ] | -Ih NN N - | L ] ﬂ
Daily net C exchangg E S -
05 ; -10
. Summer 15
Csink: . .20
TR S BN E— E— P
1 3 59 B8 117 146 175 204 233 262 291 3N 349
Dy of Year

Oechel et al. 2014. JGR
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To canister assembly
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Transition Zone .
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Seasonally invariant

temperature gradient Pedron et al. In Prep.

Isothermal Permafrost




Reconstructing Land Cover Change:
Initiation of Northern Peatlands

First Initiation Age

& & 'i'
& i:%‘_ ) 'F o
b s e
. 4 i
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g e g
o . ¥ = e = i Faatlands
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- B - - o
-;H Wi ? W Peat Basal Age
o ciha "' : & * ER1GS5 - 14ka
i i y 4 - 12k
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G r I'._'.I_' { ' ;_'%. " XS, H-Gkn
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Bra | EERRT
- -0k

MacDonald et al. 2006. Science

Modern northern peatlands
cover 4 M km? across Eurasia
and North America and store
180-455 Pg C, while also
releasing 20-45 Tg CH, yr!

14C-dating basal peat (bulk &
macrofossils) shows:

* No extensive peatland
complex before 16.5 ka

e Rapid expansion between 12
and 8 ka

* Fens 2 bogs



Rapid C Loss and Slow Recovery following
Permafrost Thaw in Boreal Peatlands?

| @ Koyuluk

,,,,,,,,

# =
[
Carbon slock (kg m2)

ormerly froen permafrosy
Loy 0
Permafrost Plateau (Collapse-scar bog) Permafiost Plateau

c m  am w0 om0 tw w0 wm
Time since thaw (years)
Upon thaw, C loss of the forest peat C is equivalent to ~¥30% of the
initial forest C stock, and is directly proportional to the pre-thaw C
stocks. Recover is slow (centuries to millennia)

Jones et al. 2016 GCB



Rapid C Loss and Slow Recovery following
Permafrost Thaw in Boreal Peatlands?

b) Burned Intact Peat surface Young b
Peat Plateau  Peat Plateau Water table position Burnt Plateau thaw Old thaw
(BPP) (IPP) Permafrost transition o - L L L i

Mineral soil transition

100 ®m Frozen
Young and Mature
Thermokarst Bog 'E' 200
(YTB, MTB) .E. 200 = Anoxic
5 unfrozen
9 400
I Oxic unfrozen
500
600

Surface soil only  Total profile

-

Estop-Aragones et al. In Review
Radiocarbon Short Course 2016



Fraction modern (M) of respired COy

CO,flux (g C m2 day™")
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_| Probe
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SR (Full profile collar flux)
SRﬂgw (Equation 3 and M values of panel b)
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Burnt
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h

BPF1BPP2EBPP3

.

Young
collapse
col

.
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Warming (active layer deepening)
of peat plateaus with oxic soils 2>
5x increase in respiration of aged
soil C (1,600 yrs BP),

>20% of total respiration

Thaw & collapse =
no contribution from aged soil C to
respiration, rapid C accrual

Interactions between wildfire and
dominant mode of permafrost
thaw will strongly influence the
future stability of aged soil Cin
northern peatlands

Estop-Aragones et al. In Review



Thaw Lakes: Shortcuts to Permafrost C?

* Northern lakes (>502N) represent
one of the largest natural CH,
sources: 16.5 Tg CH, yr?

* On a per lake basis, CH, emission
rates are greatest from shallow
thermokarst lakes on yedoma

* Ebullition accounts for up to 79% of the
total ice-free season flux, but is highly
sporadic in space and time

* Average: 140.6 mg CH, m=2d™!
* |QR:77-188
* Maximum: 461 mg CH, m=2d!

K. Walter Anthony, University of Alaska, Fairbanks

* Ebullition CH, is sourced from highly
variable carbon sources

* Mean “C-age varies from
40,000 years BP to modern



Thaw lakes on the AK’s North Slope
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www.arcticlakes.org and magnitude of C
emissions from 40 thaw
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" Continuous Permafrost Zone U '- = 2 N-S transects spanning 7
o af g o geology types, incl.
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Today, North Slope Thaw Lakes Emit Young C as CO,
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Thaw lakes emit 0.89 £+ 0.02 Tg C
(diffusive C-CO, + C-CH,) yr?) (99% CO,)

— l — C emissions are young:
- | =
100 300 500 700 900 1100 1300 1500 1700 1900 CH4 modern to 3,300 +70 years BP
: 14
i CO, modern to 1,590 + 20 years BP

Older emissions are restricted to finer-
textured deposits

Elder et al. In Review



Land 4C-opportunities

Months to Centuries to
Years Millennia
Pulse-labeling Natural

14C abundance *C

Continuous labeling
13C & 14C

Techniques

Natural
Abundance 13C

w Plant metabolism Growth

O NSCs Storage SOM Dynamics
8 New Growth Decomposition
O Decomposition Land cover
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